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A method is described for constructing approximations, to statistical functions, 
that are uniformly convergent in time, starting with the expansion of the func- 
tions as Taylor series in time. The principal tool is a technique for expanding 
the Fourier transform of the unknown function by use of a set of orthonormal 
functions. Application to the Lagrangian velocity correlation and the eddy diffu- 
sivity for marked particles in a three-dimensional random velocity field yields 
results that agree excellently with computer simulations. The approximation 
procedure is extended to expansions in strength parameters (e.g. Reynolds 
number expansion) and to an expansion about the direct-interaction approxima- 
tion. The latter is based on a new model representation of the direct-interaction 
approximation. An implication of the work is that the usual diagram expansions, 
obtained through term-by-term averaging over a Gaussian distribution, may 
not uniquely determine the functions they represent; it may be that truly 
meaningful expansions are possible, in general, only for distributions which 
bound the amplitudes in the individual realizations. 

1. Introduction 
Suppose that an initial ensemble of turbulent velocity fields is specified by 

all its moments. Then straightforward manipulations of the equations of motion 
yield formal expansions for any desired statistical functions in the form of Taylor 
series in time or in the form of power series in a strength parameter associated 
with the non-linear terms in the equations of motion (Batchelor 1953; Kraichnan 
1966). In  addition, several less elementary formal expansion schemes for tur- 
bulence have been proposed in recent years, based either on rearrangements 
of the Taylor and strength-parameter expansions (Wyld 1961; Kraichnan 1961 ; 
Lee 1965; Orszag 1966) or on expansion about an assumed approximate statis- 
tical state (Edwards 1964; Herring 1965, 1966; Edwards & McComb 1969; 
Phythian 1969). 

In  an assessment of the formal expansion schemes made several years ago 
(Kraichnan 1966), the present author pointed out that any of them very likely 
has a zero radius of convergence in the relevant parameter, while, even if the 
radius of convergence were infinite, impractically many terms might have to be 
summed to get valid approximations to statistical functions from truncations of 
the series. Moreover, the complete expansions contain insufficient information 
to determine the statistical functions uniquely in the absence of additional sources 
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of information about analyticity properties. For example, the sum of a Taylor 
series is determinate only up to a function whose Taylor series vanishes. 

The present paper returns to these questions and reports some techniques 
for constructing uniformly convergent approximations to statistical functions 
by combining qualitative information with the quantitative data provided 
by the coefficients of formal expansions. The principal tool is a way of expanding 
the Fourier transform of the unknown function into contributions from a 
suitably chosen complete set of continuous orthogonal functions. The first 
part of the paper develops the mathematical methods and illustrates them by 
application to the series expansion of some simple functions. Application is then 
made to the Taylor series expansion in time for the Lagrangian velocity correla- 
tion of a particle moving in a random, isotropic, incompressible velocity field, 
and the results are compared with computer experiments. Finally, more general 
applications, and modifications, are discussed, including application to strength- 
parameter (i.e. Reynolds or PBclet number) expansions and to an expansion 
about the direct-interaction approximation. The latter expansion is a modi- 
fication of one recently proposed by Phythian (1969). 

The general implication of the paper is that, first, it is indeed possible to 
obtain converging sequences of approximations to turbulence functions by 
suitable manipulation of known formal expansions and that, secondly, surpris- 
ingly good quantitative approximations can be obtained, a t  least in some cases, 
by using only the lowest few coefficients in the expansions. The techniques pro- 
posed herein are, by their own nature, non-unique, and considerable extension 
of the convergence theory seems feasible. It is therefore hopeful that modifica- 
tions and alternatives will yield better and more widely applicable approximation 
methods in the future. Pad6 approximants, another technique for handling 
divergent series, have already shown some promise for turbulence applications 
(Kraichnan 1968, 1970a). 

2. Approximation of power series by orthogonal expansion of the 
Fourier transform 

Suppose thatf(t)  and p(a) are even functions related by 
W 

f ( t )  = p(a) cos (at)da. 
- W  

Using the Taylor series for cos, we have 

where 

W 

f ( t )  = x ( -  l)nCZnt2n/2n!, 
n=O 

Czn = [" p(a) aZndu. 
J -m 

Thus the problem of reconstructing f ( t )  from its Taylor series is equivalent 
to that of finding p ( a )  from its moments. We seek to do this by expanding p ( a )  
in the form 
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where the Pn(a) are the set of polynomials orthogonal in ( - co, co) with respect 
to some even, everywhere-positive weight w(a)  : 

n r m  

Prom (2.4) and (2.5), we have 

f ( t )  = 5 b2,Srn P2n(a)c~~(at)w(a)da 
n=O -m 

where <(t) is the cosine transform of w(a). Each coefficient b,, in (2 .7 )  is deter- 
mined by the czm (m < 12). Thus the successive terms of (2.7) can be determined 
from those of the original Taylor series (2.2). We must now justify the formal 
manipulations and find conditions under which (2.7) converges. 

First of all, normalizability of the Pn(a) requires that w(a) fall off faster than 
algebraically as 1.1 +co. On the other hand, if we expand p(a)/[w(a)]* in the 
orthonormal functions Pn(a) [w(u)]*, Bessel's inequality yields 

wherein the integral exists if p(a) is in L2 and w(a)  falls off sufficiently slowly at  
infinity. If [w(a)], cos (at) is expanded in the Pn(a) [w(a)]*, Bessel's inequality 
yields 

(2.9) 

where the right-hand side exists in consequence of the already required inte- 
grability of w(a). It now follows, from applying Schwarz's inequality to (2.8) 
and (2.9), that (2.7) converges whenever the right-hand side of (2.8) exists. 

Let p,(a) and f,(t) represent the respective truncations of (2.4) and (2.7) 
to n 6 r .  Then 

P2,(a) COS (at) w(a) da a < w(a) cos2 (at)da, 
n=O Is" -m 

f,V) = Sm p,b) cos W d a 7  (2.10) 

where the interchange of integration and summation is permitted at  any r 
because the integrals converge separately for each n. Subtracting (2.10) from 
(2.1), multiplying the integrand in the result by [w(a)/w(a)]i ,  and again using 
Schwarz's inequality, we have 

--m 

The second integral on the right-hand side of (2.11) has a bound independent 
oft, while the first integral approaches zero as r+m, if the right-hand side of 
(2.8) exists and if the P2,(a)[w(a)$ are a complete orthonormal set of even 
functions. Under these conditions, f,(t) +f(t),  uniformly, as r + co. 
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Let us now consider the significance of these sufficient conditions for uniform 
convergence of (2 .7)  tof(t). Existence of the right-hand side of (2 .8 )  is assured, 
for some w(a) with iiormalizable PZn(a), provided that p(a) is in L2 and falls off 
faster than algebraically at  infinity. (The first-named condition is not always 
necessary for convergence of (2.7),  provided that (2.0) converges fast enough; 
this will be illustrated by an example in 5 3.) Faster-than-algebraic fall-off 
implies that f ( t )  and all its derivatives are continuous everywhere. The appear- 
ance of this condition expresses the fact that f ( t )  cannot be continued through a 
singularity a t  t + 0 if the only information available is its behaviour about t = 0. 

A sufficient condition for completeness of the PZn(a) [w(a)]* follows from the 
fact that there is no even p(a), other than p(a) = 0, such that the cZn all vanish 

and Srn lp(a)I cosh (qa)da exists, where q is a non-zero, positive constant. The 

following concise proof of the latter theorem is due to Orszag (private communica- 

tion). Set f ( t )  = p(a) eiutda. Thenf(t) is analytic in the strip - q < Imt < y, 

and f(n'(0) = in a*p(a)da = 0. Hence, f ( t )  = 0 for I t ]  < q and, by analytic 

continuation, f ( t )  = 0 throughout the strip. Therefore p(a) = 0, by the Fourier 
inversion formula. Now suppose that w(a) is O(e-*lal) as laJ+co and that the 
Pzn(a) [w(a)]& were incomplete with respect to some even p(a) for which the right- 
hand side of (2.8) exists. We assume that the even function w(a) is positive, 11011- 

zero everywhere, and bounded. Incompleteness would mean that p(a) -p,(a), 
whose moments all are zero, would be non-zero in mean square. But it follows 
from Bessel's inequality, and the properties of w(a),  that 

--m 

S a  
Smm 

jm (p(a)-Pm(a)12COSh ( w ) d a  

s", 
--m 

exists and therefore that Ip(a)-p,(a)\ cosh(p'a)da exists, if 0 < q' < i q .  

Hence, the preceding theorem would be violated. It follows that the PZ,(a) [w(u)]d 
are complete with respect to p(a) for which (2.8) exists, and that (2 .7)  converges 
uniformly to f ( t )  for -a < t < co, provided that w(a) is everywhere positive, 
non-zero, and bounded and that w(a) = O(e-*lal) as la1 -+a, for some positive q, 

Exponential fall-off of p(a) as 1.1 +co implies that (2.2) has a finite, non-zero 
radius of convergence. The converse is not always true, and analyticity of 
f ( t )  at  t = 0 does not ensure that w(a) exists such that (2.7) converges uniformly 
to f ( t ) .  The following three statements express sufficient conditions for conver- 
gence. In  all three statements, we assume that ~ ( a )  is even, everywhere positive, 
non-zero, and bounded, and that 

e-*"lal < w(a) < e-Q'ial, as 1.1 -+a, where 0 < q' < yrr .  

( 1 )  Equation (2.7) converges uniformly to  f ( t )  if [f(t)12dt < C and 

[d*f(t)/dtnI2dt < 2n!q-2"C (n = 1 , 2 ,  ...), for some positive C and q, and 
rm 

q" < q. 



Convergents to turbulence functions 193 

( 2 )  Equation (2.7) converges uniformly to f ( t )  if [f(t)12dt exists, and J3, 
f ( t )  is analytic at  t = 0 with radius of convergence q for (2.2), and, for 
la1 > somea, p(a) is non-negative with a bound independent of a, and q" < q. 

(3) Equation (2.7) converges uniformly to f ( t )  if f ( t )  is analytic in the strip 

If(u + iv)  I du is uniformly bounded within this strip, t = u + iv ,  (v1 < q and 

and f --f 0 uniformly within this strip as JuJ -+ co and q" < 2q. 
Km 

Statement (1) implies 

(1  + t2)-1 If( t) l  at < co. 
--m 

Then differentiation of the Fourier transform relations under the integral signs 
can be justified by appeal to 'generalized functions', and Parseval's formula is 
valid for f ( t )  and its derivatives in any case where either of the integrals in the 
formula exists (Lighthill 195Sj. The given bounds then yield 

m 
2 n S  a2fiIp(a)12du < 2nlq-2"~ (n = 0,1 ,2 ,  ...I. 

--m 

Hence, 

exists, and, interchanging integration and summation by the monotone con- 
vergence theorem, we have that 

5 (q")2" (2n ! ) -1Sm a2n 1p(a)l2da 
12= 0 -a 

J ~ Ip(a)12cosh(q"a)da 
--m 

and, hence, (2.8) exist. 
In statement (a ) ,  f(z%)(O) < 2n!q-2nC (for some C > 0), 

the last since f (0) exists and p(a) 2 0 (la1 > a). Equation (2.1) and the definition 

whence aB"p(a)da = f " ( O ) ,  by p(a) 0 (1.1 > a) 

and the properties of sinBn ( ~ a ) / ( ~ a ) ~ n .  The bounds on f2f i (0) ,  p(a) 0 ((a1 > a), 

Ip(a)lda < co then give Ip(a,)l cosh (q"a)du < 00, 

m 

and /Im 
whence, since p(a) is bounded for la\ > a, 1 Ip(a)12cosh(q"a)da exists, SO 

--m 

that (2.8) exists. 
I 3  F L M  41 
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To prove statement (3), we write 
W 

p ( a )  = ( ~ n - ) - 1 /  f ( t )  e-iatdt 

and (for a > 0) shift the integration contour from the real t axis to the line 
t = u - iq + ic, where E is an arbitrarily small positive constant, returning to the 
t axis at  It1 = 00. The uniform bound on the integral off then shows that the part 
of the contour parallel to the real axis makes a contribution O(e-(q-c)a) to p(a), 
while the condition that f -+ 0 uniformly shows that the returns make a vanish- 
ing contribution. Also, the uniformity, analyticity, and absolute integrability of 
f ( t )  on the real axis imply that 

--oo 

exist. It follows that (2.8) exists. 
The most inclusive of the three statements is (l), since the bounds on integrals 

given therein are necessary conditions for (2.8) to converge with some w(a)  
that yields a complete set of orthonormal functions. However, as an example 
in 9 3 will show, (2.7) can converge even in some cases where (2.8) does not. 

In  statement (2), the boundedness of p(a) at large a is a stronger condition 
than needed, and probably can simply be omitted for physical applications. 
In  fact, if Imm p ( a )  cosh (q”a)da and /Irn Ip(a)12da 

both exist, with p ( a )  non-negative for (a1 > a, the only condition under which 

Irn Ip(a) I cosh (2q”a) da 
- w  

could fail to exist would appear to be if p ( a )  exhibited a sequence of peaks of 
exponentially increasing sharpness, as la] +a. An example is given below. 

A corollary of statement (2) is that a non-negative, even p(a) is uniquely 
determined by its moments c~~ (n = 0 , 1 , 2 ,  ...) if the latter are bounded by 
cSn < 2n!  q-2nC. This follows from the fact that the transform f (t) ,  which is analy- 
tic in the strip IImtl < q“, is uniquely determined. The uniqueness of p(a) is a 
variant of Carleman’s theorem (Wall 1948), whose usual statement says that 
an even, non-negative, integrable p(a) is uniquely determined by the c~~ if 

C (1  / c ~ ~ ) ~ / ~ ~  diverges. 
m 

n=O 

The distinctions among the three statements can be elucidated by some simple 
examples. The choice f ( t )  = exp ( - P) satisfies the conditions of all three state- 
ments. The choice f ( t )  = t-lsin ( t )  satisfies statements (1) and ( 2 ) ,  but not (3).  
The choice f ( t )  = [1+ (t  - 1)2]-1+ [1+ ( t+ 1)2]-1 satisfies (1) and (3), but not ( 2 )  
[p(a) cc e-Ia’ cos a] .  The sum of the last two examples satisfies only (1). 

Now for some examples that satisfy none of the statements, and for which 
there is no w(a) with complete orthonormal P2,(a) [w(a)]* such that (2.8) exists. 
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The function cos (t2) is analytic everywhere, but its transform oscillates with 
constant amplitude and ever-increasing frequency as I a I increases; 

(1  $- t y  cos (t2) 

also violates the conditions of all three statements. The function f (t) = (1  - t2)* 
for t 2  < 1, = 0 for t2 > 1, is analytic at  t = 0,  but its transform oscillates and 
goes off as a power for large lal. Finally, consider p(a) = 0 everywhere except 
p(a) = n-Ien for 1 la1 -%I < cZn (n = 1 , 2 ,  ..., co). Here f ( t )  is bounded and, 
for all real t, Idnf(t)/dtnl < n! C, for some positive C, so that f (t) is analytic in a 
strip of half-width one centred on the real axis. But, although 

m j Ip(a)l cosh (q”a)da exists for 0 < q” < 1 ,  
-m 

Ip(a)12cosh (q”a)da exists only for q” = 0. 

This example spectacularly violates the boundedness condition of statement ( a ) ,  
and it violates the integrability conditions of statements ( 3 )  and ( 1 ) .  

If p(a) is reasonably well-behaved at  large la\ , the following modification of 
statement ( 1 )  is relevant. 

(1’) Equation (2 .7 )  converges uniformly to f ( t )  if 1 [f(t)l2dt exists and 

I f ( t ) l  < C, Idnf(t)/dtnl < n!q-nC (n = 1 ,2 ,  ...), for some positive C and q in- 
dependent of t, provided that q“ < 2q and that there exist positive a, b, 8, and 
D such that 

m 

-m 

and for some la’ - a1 < b .  (The final condition excludes infinities and oscillations 
of unbounded rapidity at  large la1 .) 

To prove ( l ’ ) ,  we first note that the bounds on f and its derivatives imply 
that f is analytic and bounded in a strip of half-width q centred on the real t 
axis. Consider the function f,(t) = f (t)exp( - vt2),  where v > 0. Its transform 
p,(a) can be estimated by the same contour shift used in proving statement (3). 
Again, the returns give a vanishing contribution, while the horizontal part of 
the contour gives a contribution of the form e-(q-e)a times an absolutely convergent 
integral over u. Now integrate this contribution between a’-S and a’+S, 
with the weighting 1 -s2 (a = a‘+sS), and exchange the order of integrations. 
The resulting integral over u is absolutely convergent and independent of Y 

as a+co. From this, and ParseVal’s relation for f(t), it follows that ( 2 . 8 )  exists 
for q” < 2q. 

It is essential to remember thatf(t) is never uniquely determined by knowledge 
of the cZn alone, whatever the values of the latter. Some sort of global information 
about f (t) or p(a) is needed also. Suppose thatf(t) satisfies conditions for conver- 
gence of (2 .7 ) .  Then f( t )+g(t) ,  where g(t) = Itl-$.exp(- It+t-ll), has precisely 

as v-+ 0. It then follows from the stated condition onp(a) that Ip(a)l = O(e-(q-c)a 1 

13-2 
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the same cZn. a s f ( t ) ,  and g( t )  is continuous, along with all its derivatives, a t  all 
real t .  However, the cosine transform of g ( t )  is 

(Roberts & Kaufman 1966), which falls off a t  large la1 like exp( - 21alt) and there- 
by fails to satisfy our conditions for uiliform convergence. A similar, but more 
general, example of a g ( t )  which is continuous, along with all its derivatives, 
for all real t ,  but which has a vanishing Taylor expansion about t = 0, is the 
cosine transform of 

exp ( -  / a / ~ ) c o s  [lalstan (ms/2)] (0 < s < 1)  

(Shohat & Tamarkin 1943). 
Convergence of the p,(a) to p(u) in mean square implies that p,(a) converges 

to p(a) a t  all but a zero-measure set of points a. If there are no discontinuities 
in p(a) or w(a),  a t  which Gibbs phenomena would be expected, we anticipate 
that, when the completeness condition is satisfied, p,(a) converges to p(a) at 
every finite a. (However, the author has found no proof of this, in the literature, 
that is valid for the general weights w(a)  which we admit.) In  particular, we 

anticipate that np,(O) converges to / r f ( t ) d t  if neither p(a) nor w(u) are discon- 

tinuous a t  a = 0. It should be noted here that this last convergence property 
does not follow from the uniform convergence of f,(t) to f ( t ) .  

Iff ( t )  and p(a) are odd, instead of even, (2.1) is replaced by 
m 

f ( t )  = / p(a) sin (at)da, (2.12) 
03 

and the analysis goes through with the obvious change that the expansion is 
now in odd P,(a). The convergence and completeness criteria are the same as 
in the even case. Since the procedures are linear, the same convergence and com- 
pleteness criteria apply to f ( t )  which are the sums of an odd and an even part. 

A number of modifications and generalizations of the orthogonal expansion 
method are possible. Simple transformations extend the applicability to some 
functions f ( t )  which are excluded by the convergence conditions developed above. 
For example, iff(t) is odd and approaches a non-zero limit as t + co, its sine trans- 
form is unbounded. In  this case we can apply the expansion to the even function 
df(t)/dt and seek convergents tof(t)  by integrating the convergents to its deriva- 
tive. To take another case, suppose that f ( t )  has a branch point a t  some t, + 0. 
We can transform to a new variable s so as to map the singularity-free region 
about t = 0 upon the entire real s-axis and determine the power-series expansion 
in s from that in t .  The expansion procedure can then be carried out in terms of s, 
and the final results transformed back to yield convergents t o f ( t )  between t = 0 
and t = t,. Finally (2.1) can be replaced by other integral transforms whose 
kernels have known power-series expansions, the use of the Stieltjes transform 
(Kraichnan 1970a) being of particular interest. 

If/" w(a)da is a fixed constraint, the right-hand side of (2.8) is stationary to 
-m 
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variations, and has a minimum, if [w(u)I2 cc [p(a)l2 for all a. If the characteristic 
width of w(a)  is much smaller than that of p(u), the integrand is large at  large a, 
and the reverse inequality makes the integrand large at  small a. This suggests 
that it should be possible to accelerate convergence of the orthogonal expansion 
method by incorporating adjustable parameters in w(a)  and, with suitable pre- 

cautions, choosing them, at  each r above some minimum, to minimize lbZnl2 

for the rth convergent. We shall illustrate an heuristic scheme of this kind in 4 3. 
A similar variational procedure provides an alternative, to the differentiation 

method mentioned above, for finding convergents to anff t )  which has a non- 
zero limit as t+co. We apply the orthogonal expansion technique to f ( t ) + K ,  

r 

n=O 

and determine K ,  at each level of the expansion, so as t o  minimize 

The orthogonal expansion method can be modified to give uniformly con- 
vergent approximations to f ( t )  for all real t when the given information is the 
values at  a discrete set of points in the interval 0 < t < t,, rather than the deriva- 
tives at  t = 0. Suppose these points are 0, t,/N, 2tl/N, 3t,/N, ..., t,. Then we 
consider the infinite sequence Pn (n = 0 ,1 ,2 ,  ...), given by 0, 1/N, 2/N,  3 /N,  ..., 
1, QN, $N, $N,  ..., (2N- l)/2lV, tN,  BN, ..., (4N - 1)/4N, .... An orthonormal 
set of functions is now constructed by linear combination of the functions 
[w(a)]* cos (P,tla), in such a way that the nth orthonormal function involves 
only p, for s < n. The weight w(a) satisfies the conditions previously imposed, 
and we can ensure normalizability of the present orthogonal set by requiring, 
in addition, that w(a) be a monotone decreasing function of la1 . The coefficients 
of the expansion of p(a) by means of this orthonormal set are determined by the 
values of f ( t )  at the points P,tl in direct analogy to the preceding analysis. The 
sufficient conditions for uniform convergence for all real t carry over, the proofs 
now depending on the fact that an analytic function which is zero at the in- 
finitesimally spaced set of points Pntl must vanish identically. The original 
N +  1 data points thus provide a set of approximants that are embedded in a 
uniformly convergent sequence. In  contrast to (2.7), the present procedure gives 
f ( t )  as a linear combination of c(t) and the functions c(t +P,,tl). 

lbZnl2. 
,=O 

3. Illustrations of the expansion method 
For a first example, let 

f ( t )  = exp ( - @2), p(a) = (Zn-)-+exp (-&a?), w(a) = (4n-)-+exp ( -  ga2). 

The P,(a) are the (suitably normalized) Hermite polynomials. Using these 
functions in (2.2)-(2.6), we find for the ]b2,12 the values 1, 0-125, 0.023, 0.005, 
0.001, 0.0002, 0.00006, ... for n = 0, 1, 2,  .... This corroborates the expected 
convergence of (2.8). Figure 1 compares p(a) with the p,(a) for r = 0, 1, 2 .  
The values of p,(O)/p(O) are 0.707, 0.884, 0.950, 0.978, 0.990, 0.995, 0.998, ... 
for r = 0, 1, 2,  ..., which indicates a rapid convergence to the exact value of 
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If w(a) is Gaussian, as in this example, the approximants have a very simple 
expression in the t domain. The cosine transform of Pn(a) w(a) i s  proportional 
to tnexp ( - t 2 ) ,  to use the present Gaussian, and it is easy to see that 

where [ I(,) denotes the truncation, at  term tZr,  of the Taylor series of the function 
within [ 1. The latter, of course, is exp (it2) in the present case. Equation (3.1) 
displays clearly the uniform nature of the convergents f,(t) as compared to the 
simple truncations [exp ( - it2)](,) of the original power series. Any of the latter 

f r ( t )  = exp ( - t 2 )  [ f ( t )  exp (t2)1(,,, (3.1) 

0.6 

0.4 

0 

a 

FIGURE 1. Convergents pr(a) t o  p(a) = (27r-*exp ( - *az) based on weight 
w(a) = (4..rr)-)exp ( -  +az). Curves 1, 2 , 3  show r = 0, 1 ,2 .  

increase without limit as t+w. On the other hand, any truncation [exp (it2)](,) 
underestimates exp ( i t 2 )  at large t ,  and the f,(t) all vanish at t = co. Figure 2 
showsf(t), f,(t) ( r  = 0, I ,  2 )  and [ f( t)L2) for the present example. 

For an example where ( 2 . 2 )  has finite rather than infinite radius of convergenoe, 
let us take f ( t )  = sech2 t and take for w(a)  the cosine transform of sech t .  (The 
positivity of w(a) then follows immediately from the representation of sech as a 
limiting case of the elliptic function en.) We can evaluate the P2,(a) and the b2n, 
and find thef,(t) from (2.7) all without explicitly evaluating w(a). We need only 
the moments of w(a), which follow immediately from the Taylor series for sech t. 
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Figure 3 shows the resulting approximants f J t )  (r  = 0,1,2) compared with 
f ( t ) .  The lbznI2 are 1, 0-25, 0.0156, 0.0041, ... (n = 0, I, ...), and the values of 
p,(O)/p(O) are 1.57, 1.178, 1.104, 1-072, ... (T = 0, 1, ...). 

In  both the preceding examples, w(a) was chosen to qualitatively resemble 
p(a), and clearly this is helpful for rapid convergence of the expansion method. 
The sufficient conditions for convergence found in $ 2  say nothing about how 
fast the convergence is. Suppose we takef(t) = cost, and again take w(a) to be 

0.4 

0.2 

0 1 2 3 4 
t 

FIGURE 2. Convergents tof(t) = exp( - i t2 )  from the p,(a) of figure 1. 
Curves 1, 2, 3 denote r = 0, 1, 2 .  Curve 3’ is 1-&2++t4. 

the transform of exp(-t2), so that (3.1) holds. Here (2.8) diverges, since 
p(a) = $[6(a - 1 )  + 6(a + l)] is not square-integrable. However, this is one of the 
cases, mentioned in $2, where (2.9) converges strongly enough that the f,(t) 
converge anyhow. ThesuccessivepJa) peak more and more strongly about 1.1 = 1 , 
and the successive f,(t) follow cost more and more faithfully until each dies 
to zero as t -+a. For large t ,  the f,(t) have, again, the advantage, over simple 
truncations of the Taylor series for cost, that they are bounded. But they are 
much less accurate than the Taylor-series truncations for t small enough that 
the latter are good approximations. 

We wish next to give an example, not as yet supported by convergence theory, 
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which suggests that the successive cZn. can be used to improve an initial choice of 
w(a) and accelerate convergence. Again, take f ( t )  = sech2t, but now start with 
Gaussian w(a). We know that any given Gaussian w(a) will give divergence of 
(2.8), and, in this case, it can be verified that the f,(t) diverge also. However, 
suppose that, for r = 1 , 3 , 5 ,  ..., we take a sum of Gaussians, 

0.25 

0.2 

0.15 

- 
% v 

a 

0.1 

0.05 

I 

0 1 2 3 4 
t 

FIGURE 3. Errors &fr(t) = f,.(t) - f ( t )  in coiivergents to f ( t )  = sech2t formed with tho 
transform of sech t as weight. Curves 1 ,  2, 3 show r = 0, 1, 2. 

r 

?E=O 
where the r+ 1 parameters Ai and pi are adjusted so as to minimize lb2n12 

and, thereby, to minimize projection on the higher orthogonal functions. For 
even r ,  we use the w(a)  formed for r - 1. In the case off ( t )  = sech2 t ,  we find that, 
through r = 5 ,  a t  least, the minimum value of the projection is zero. That is, 
the Taylor series for secli2t can be matched exactly, through order 2r, by 

&r+ 1) 

i= l  
f,(t) = 2 Aiexp ( -,4:t2) ( r  odd). (3.3) 
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The values found for Ai, pi and p,(O)/p(O) are as follows: 

r Pr(O) /P(O)  A1 a A, 8 2  A 3  8 3  

- - - - 1 0.88623 1 1 
3 0.96422 0.7847 0.8352 0.2153 1.4500 - - 
5 0.98494 0.5792 0.7469 0.4001 1.2327 0.0207 1.8234 

Figure 4 shows the errors S f ( t )  = f7(t) -f(t). Note the difference in vertical scale 
between figures 3 and 4. 

-0.10 

-0.08 

- 

- 
1 

o l  1 2 3 4 
t 

FIGURE 4. Errors 8f&) forf(t) = secha t and weight taken as best-fitting sum of Gaussians 
(3.2). Curves 1, 2, 3 show r = 1, 3, 5. 

As a final example, which goes even farther beyond the range of proved con- 
vergence, let us take 

f ( t )  = 8 p3exp ( - 2p2) sech2 (p t )  dp. 1: (3.4) 

The Taylor series, which has zero radius of convergence, is 

(3.5) f ( t )  = 1 - t 2  + t4 - IZt6 +31t8 - 691t10 + . . . , 
1 5  2 1  315 

and f ( t )  is a monotonically decreasing function of t2 which goes like t-4 at large 
t. This f ( t )  may be interpreted as the Lagrangian velocity correlation (v(0) v( t ) )  
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of a particle which starts at t = 0, x = 0 in a prescribed, static Eulerian velocity 
field in one dimension, u(x)  = A sin (nz) + B cos (nz), where A and B are in- 
dependent Gaussian variables, {A2}  = {BZ} = 0.5, and { } denotes ensemble 
average (Orszag, private communication). 

Here p(a) goes like exp ( - lal)) at large a, and the counter-example given in 
$ 2  shows, therefore, that f ( t )  is not uniquely determined by the coefficients 
cZn even if we use the knowledge that p(a) is positive everywhere. There is no 
w(a) such that the orthonormal functions are complete and, at the same time, 

t 

FIGURE 5. Approximantsf,(t) to thef( t )  of (3.4), (3.5), with weight taken as the best 
fitting slim of Gaussians (3.2). Curves 1, 1 +, 2, 3 show r = 1, 2 ,  3, 5. 

(2.8) converges. However, if we repeat the procedure used above, taking an 
adjustable wfa) of form (3.2) and minimizing the projection on the higher ortho- 
gonal functions, the results are puzzlingly good. Again (3.3) gives an exact 
match to the Taylor series through order 2r (at least for odd Y 6 5). The values 
found for Ai, pi and p,(O)/p(O) are now as follows: 

P r ( O ) / P ( O )  AI Pl A2 Pz A3 P 3  

- - - -. 1 0.707 1 1 
3 0.810 0.907 0.824 0.093 2.03 
5 0.854 0.812 0.740 0.186 1.69 0.0023 3.16 

- I 
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Figure 5 compares f ( t )  with f , ( t)  for r = 1 , 2 , 3 , 5 .  The approximant f z ( t )  is ob- 
tained using the single-Gaussian w(a) from r = 1. It already shows symptoms of 
the divergent behaviour of the fixed-weight expansion. On the other hand, the 
curves for r = 1 , 3 , 5  appear a t  least consistent with convergence to the correct 

S i n c e f ( t )  goes as t-4 at large t ,  while any expansion based on Gaussians can 
only give Gaussian fall-off at large enough t ,  we may hope to improve the results 
just given by some more appropriate choice. For this purpose, let us replace 
the underlying function (4n)-$/3r1exp ( - az/4/33 in (3.2) by 

f (0. 

QP-'(1+ lal/2Pi)exp(- I.1/2Pi)> 

-0.05 - 

-0.03 - 
u v 

2 

0 1 2 3 4 
t 

FIGURE 6. Errors Jf,.(t) forf(t) of (3.4), (3.5) and weight taken as best-fitting transform of 
(3.6). Curves 1, 1+, 2, 3 show r = 1, 2, 3, 5. 

which has the cosine transform (1 + +/?:t2)-z. As it happens, this choice, which 
is about the simplest with the correct qualitative behaviour at  large t ,  is related 
to Gaussian weight by an integration over width parameter that precisely 
corresponds to the p integration in (3.4). Thus we find again that the Taylor 
series is matched exactly through order 2r, now by 

The numerical results for p,(O)/p(O), Ai and pi are precisely those given after 
(3.3). Figure 6 shows the errors 8f,(t) - f ( t )  for r = 1 , 2 , 3 , 5 .  There is a marked 
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improvement over the Gaussian fit. Also, the r = 2 curve gives a smooth im- 
provement over r = 1, suggesting that, even though the expansion on fixed 
w(a)  is still divergent, it  has the nature of an asymptotic expansion whose optimum 
cut-off lies beyond the lowest term. 

The results described above suggest the possibility that, implicitly, the 
adjustable-weight procedure uses additional information which did not enter 
the convergence theory of $ 2. Perhaps the apparent convergence to (3.4)) 
(3.5) with Gaussian weight is associated with the existence of the integral 
representation (3.4), wherein f ( t )  appears as a weighting of functions with finite 
radius of convergence in t .  We may note that if the p integral is cut off at  any 
finite value, or is approximated in some more elaborate fashion by a weighting 
with finite cut-off (corresponding to cut-off distributions of the amplitudes A 
and B in the underlying particle-motion), the sufficient conditions for the con- 
vergence theory of $2  are satisfied. It may be that the approximation method 
we have just explored effectively does this. We shall return to this question in 
$4, in the context of a particle-diffusion problem more relevant to actual turbulent 
flow. 

4. A three-dimensional diffusion problem 
Consider a three-dimensional, incompressible, homogeneous, isotropic, and 

statistically stationary ensemble of velocity fields u(x, t ) .  The position y ( t )  and 
velocity v(t) of a particle, released at  y(0) = x, which moves with the fluid 
are determined by 

t 

v(t) = u(y, t ) ,  y(t) = x+{ov(s)ds. (4.1) 

Suppose that we wish to evaluate the Lagrangian velocity correlation 

UL(t) = 4 (v(0) * v(t))/v& ( 4 4  

where { ) denotes ensemble average and v,, is the root-mean-square value of 
the component of u(x,t) along any axis. A formal series expansion of U,(t) 
in powers of t may be obtained straightforwardly as follows. Expand v(t) as 
a Taylor series with unknown coefficients and expand u(y, t) as a four-dimen- 
sional Taylor series about y = X, t = 0. The coefficients of the latter series are 
the derivatives of the Eulerian field U(X, t ) .  The coefficients in the expansion of 
v(t) can then be expressed as products of derivatives of u(x,t), evaluated at 
(x, O ) ,  by substituting both series into (4.1) and requiring that like powers o f t  
balance on the two sides of each equation. If the ensemble of realizations u(x, t )  
is now specified by giving all moments of u, the Taylor series for U,(t) results 
from substituting the seriesfor ~ ( t )  into (4.2). The coefficients of successive powers 
of t in the U, expansion are successively higher-order moments of the multi- 
variate distribution of u(x, t )  and its derivatives. Only even-order moments, and 
even powers of t ,  survive in the final result, because of the statistical symmetry 
conditions we have imposed. 

The evaluation is easiest when the u(x,t) distribution is prescribed to be 
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multivariate-normal, so that all moments can be expressed as functions of the 
covariance. Let US take the concrete case where 

(u(x + r, t )  * u(x, t‘)) = exp [ - iwg(t - t ’ )2] IOm E(k)(sin (kr)/k!r) dk, 

E(k )  = 16(2/7i-):~~k;~k~eexp( - 2k2 /k3 .  (4.3) 

Here k, and w, are the characteristic wave-number and frequency scales of the 
Eulerian field and E(k)  is the energy spectrum, which peaks a t  k = k, and is 

normalized by E ( k ) d k  = 3 ~ 3 2 .  The resulting series for UL(t) is I O W  
UL(t) = 1 - (w; + t v ;  ki) (t”2 ! ) + ( 3 4  + yu; v; k; + zgU$ k$) (t4/4!) - . . . . (4.4) 

Corrsin (1952), extending earlier work of Taylor (1921), showed that the effec- 
tive eddy diffusivity exerted at  time t on a very low wave-number cloud of marked 

particles introduced at  time t = 0 is vi U,(s)ds. We may extend the concept 

of effective eddy diffusivity to general-wave-number marked-particle dis- 
tributions as follows. The density of marked particles in any realization obeys 

J: 
(apt) @(x, t )  + u(x, t )  a V$(X, t )  = 0. (4.5) 

Let +(x, 0 )  = $,cos(k x) in every realization. It follows from the statistical 
symmetry conditions that the mean field T(x,t) at later times has the form 
$k( t )  cos (k . x). Let us define yk(t)  by 
- 

To see the significance of (4.6), consider its Laplace transform, 

X k ( 4  = T k l b  + vf k2r,(a)1, (4.7) 

where x,(ol) and I?&) are the transforms of $,(t) and yk(t) ,  respectively. If 
(4.5) were replaced by a simple molecular diffusion equation, we would have 

X k ( 4  = $ k / P  + rk21, (4.8) 

where is the molecular diffusivity, instead of (4.7). Thus vir,(a) plays the 
role of a frequency-dependent effective diffusivity. In  particular, returning to 
(4.7), we have 

X k ( O )  = {a $k( t )d t  = $ k / ( k 2 K k ) ,  (4.9) 
0 

where 
Prn 

(4.10) 

is the effective long-time eddy diffusivity at wave-number k. 
As k - t  0, the rate of change of $,,(s) approaches zero, so that (4.6), together 

with Corrsin’s results, implies that yo(t) = U,(t). 
We may express yk(t) as a formal Taylor series in t by expanding ~ ( x ,  t )  as a 

Taylor series in t in each realization, averaging to get the Taylor series for $,(t), 
and then substituting the latter into (4.6) in order to determine the coefficients 
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in the series for yk(t) .  The analysis is facilitated by starting with the spatial 
Fourier transform of (4.5). The final result for the multivariate-normal distri- 
bution with covariance (4.3) is 

~ k ( t )  = 1 - ( ~ ~ + P ~ i k i + 2 ~ ~ k ~ ) ( t ~ / 2 ! ) + ( 3 ~ $ + ~ ~ ~ ~ $ k i  

+ 1 4 w ~ v i  k2 +wvf k$ + Fv$kg k2 + 10vk$ k4) (t4/4!) - . . . . (4.1 1) 

For k = 0,  (4.11) reduces to (4.4), as it should. 
Only the numerical coefficients in (4.4) and (4.11) are consequences of the 

multivariate-normal distribution of u(x, t ) .  Any other u distribution which satis- 
fies the statistical symmetries and has moments which can be expressed as series 
in frequency and wave-number parameters w i  and k;, yields the same functional 
forms, for each power of t2, as in (4.4) and (4.11). 

So far, (4.4) and (4.11) are only formal series representations. To elucidate the 
analyticity properties of UL(t) and yk(t) ,  consider first a realization in which 
u(x, t )  is an analytic function of the three space co-ordinates, and of time, over 
all space-time. Any u(x, t )  whose 4-dimensional Fourier transform does not 
extend to infinite frequency or wave-number satisfies this criterion; in particular, 
it  is satisfied if u(x,t) consists of a finite number of discrete 4-dimensional 
Fourier components. For such a realization, we may conclude immediately that 
v(t) is analytic about t = 0, with at  least a finite radius of convergence of its 
Taylor series, and that the same is true for @(x,t), provided that @(x,O) is 
analytic in the space variables over all space. This follows from the fact that 
(4.1) and (4.5) are analytic equations, involving, now, only analytic functions 
of analytic functions. 

However, we may argue that the radius of convergence of the Taylor series 
in t for either v(t) or $(x, t )  is typically finite rather than infinite in an analytic 
realization of U(X, t) .  Suppose that u(x, t )  consists of a finite number of Fourier 
components and consider the behaviour of (4.1) for complex t .  We get complex 
y, which means complex arguments in the sine and cosine functions that give u 
along the trajectory. This gives the possibility of running away to complex 
infinity along some line in which u increases exponentially. The behaviour in 
this case would resemble the solution of the equation d[y l /d l t l  = exp 191, whose 
solutions blow up in finite time. We therefore expect that, at  least for some choices 
of x, v(t) will display singularities at finite, complex t ,  implying finite radius 
of convergence of the Taylor series. This behaviour can be directly verified for 
the one-dimensional velocity field which led to (3.4) and (3.5), and there seems no 
reason why increased complexity of the fields, incompressibility, or higher 
dimensionality should change this behaviour. Similar arguments (together with 
the physical interpretation of $(x, t )  as a density of particles) suggest that the 
radius of convergence of the Taylor series in t for $(x, t )  is typically only finite 
also. We are not attempting to prove this, only to point out, rather, that infinite 
radius of convergence cannot be assumed. 

Now consider a stationary, isotropic, homogeneous ensemble of velocity fields 
in which u(x, t )  for each realization consists of a finite number of Fourier 
components and such that, in each realization, the amplitude of any Fourier 
component, the number of components, the maximum wave-number, and the 
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maximum frequency all have upper bounds which are the same for all realiza- 
tions. Then it follows from analyticity of the realizations that UL(t) and g k ( t )  
are analytic about t = 0 so that their Taylor series have at  least finite radius 
of convergence. Further, it follows from the defining equation (4.6) that Yk(t)  
then must also be analytic in at  least a finite region containing t = 0. Now it 
follows from statistical stationarity of u and incompressibility that U,(t) is the 
covariance of a real stationary process (Lumley 1962) and has a positive Fourier 
transform. AIso, Yk(t)  has a positive transform. This follows from (4.7) and the 
fact that gk(t)/$k is the mean response function for wave-vector k in a conser- 
vative, linear system and must itself have a positive Fourier transform. Finally, 
if the ensemble smears over a band of frequencies of the Eulerian field, and the 
latter has a finite decorrelation time, then it is clear physically that UL(t) and 
yk( t )  have smeared spectra which go smoothly to zero at  infinite frequency. We 
conclude that, for such a bounded u distribution, the series corresponding to 
(4.4) and (4.11) satisfy the conditions of statement (2) of $2, for uniform con- 
vergence of (2.7). 

But if the radius of convergence for v ( t )  is finite in some finite-measure set of 
realizations, then we must expect U,(t) and yk(t)  to be non-analytic at t = 0 
for a normal distribution or for any distribution in which amplitudes are not 
bounded. This is because the radius of convergence in a realization should typic- 
ally have some sort of inverse relation to velocity amplitude. To handle an 
unbounded distribution, we could represent it as the limit of a sequence of bounded 
distributions and use the orthogonal expansion method to converge on UL(t) 
and yk( t )  for successive members of the sequence, until the converged answers 
differ little enough to satisfy us. This, in fact, follows the physics, since unbounded 
distributions do not occur in nature. However, in view of the success we had with 
( 3 4 ,  it is interesting to see what the same procedure used there gives when applied 
directly to (4.4) and (4.11) for the normal distribution. 

Figures 7-10 show approximants r = 1 and r = 2 for U,(t) and K~ =j;y,(t)dt 

obtained from (4.4) and (4.11) by using, in each case, that Gaussian weight which 
makes b,  = 0. Results are shown for wo = voko (characteristic Eulerian fre- 
quency = characteristic eddy-circulation frequency) and for wo = 0 (frozen 
Eulerian field). In  each case, the results are compared with computer simulations 
of the particle diffusion (Kraichnan 1970b). The statistical uncertainty in the 
simulations is shown in the plots. 

Again, it is puzzling that the results are so good. The case wo = woko is perhaps 
not so mysterious. If wo 3 voko, then UL(t) M exp( - &&2); that is, the particles 
do not have time to move appreciably in a characteristic time of the Eulerian 
field, and the Eulerian and Lagrangian velocity correlations are indistinguishable. 
It is also not hard to see that yk( t )  zi exp ( - +wtt2), in this limit. Thus it is reason- 
able that, if wo > voko, UL(t) and yk(t)  are not far from Gaussian in form, and even 
an orthogonal expansion based on a fixed Gaussian weight, though surely 
divergent eventually, may give good approximations in the sense of an asymp- 
totic expansion. But this does not explain why we get good approximations for 
wo = 0. 
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vokot 
FIGURE 7 

klko 
FIGURE 8 

FIGURE 7. Approxiinants r = 1 (curve 1) and r = 2 (curve 2) to Lagrangian velocity 
correlation UL(t) with w,, = vok,. Points are computer simulation results and bars give 
probable errors. Dashed curve is the Eulerian velocity correlation exp ( -  &$t2). 

FIGURE 8. Approximants r = 1 and r = 2 to k-dopendent eddy diffusivity K~ for wo = voko. 
Points are computer simulation results. 

0.4 r 

0 0  krl t 
FIGURE 9 

kP0 
FIGURE 10 

FIGURE 9. Approximants r = 1 and r = 2 for UL(2) with wo = 0 (frozen Eulwian velocity 
field) compared with computer sirnulation results. 

FIGURE 10. Approximants r = 1 and r = 2 for K g  with wo = 0, compared with coinputer 
sitnulation results. 
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An observation relevant both here and in the case of (3.5) is that, to the orders 
we have evaluated, the expansions use only relatively low-order moments of 
the underlying velocity fields. It is very likely that there are bounded dis- 
tributions, for which the convergence theory (with proper weight) is solid, that 
yield Taylor series identical with (3.5), (4.4) and (4.11) through the orders expli- 
citly examined. To say this somewhat differently, there may be a genuinely 
irreducible ambiguity associated with the non-analyticity of the expansions, but 
the non-analytic parts of UL(t) and yk(t), which we cannot determine uniquely 
from the expansions, may be effectively small, in the sense that both the values 
of UL(t) and yk( t ) ,  and the low-order terms of their Taylor expansions, are in- 
sensitive to the form of the tails of the underlying velocity distributions. 

The question arises, a t  this point, of what, particularly, the orthogonal ex- 
pansion method has to do with statistics and turbulence, in view of the fact that 
the conditions for convergence of the expansion for averages rest upon similar 
conditions for unaveraged quantities. The answer lies in the expectation that 
averages are smooth, simple-looking quantities, while the unaveraged functions 
are complicated. The computer simulations for the present problem show that 
v(t), in a typical realization, oscillates perpetually and irregularly with an ampli- 
tude N wo. No simple choice of w(a)  would be simply related to its spectrum, and 
convergence of the orthogonal expansion, even when assured, would likely 
be slow and uneven (cf. the discussion of the expansion for f ( t )  = cost in $3) .  
On the other hand, we see from figures 7 and 9 that UL(t) is smooth and uncom- 
plicated. 

5. Damped systems and coupling-strength expansions 
The diffusion problem treated in $4 is special in two ways. First, the equations 

of motion are undamped and reversible in time. Second, UL(t) and Yk(t) have 
everywhere-positive spectra. Direct application of the orthogonal expansion 
method to Taylor series in time runs into difficulties in damped systems. Con- 
sider f ( t )  = ect (t B 0). In  order to take the Fourier transform, we must define 
f ( t )  for all t, and this means a discontinuity of some order a t  some t 6 0 (implying 
a transform that goes like a power at large la])  or an essential singularity at some 
t 6 0. We can circumvent this trouble by working with a transformed variable, 
for example s2 = t or s2/( 1 + s2)a = t ,  but this seems unnatural unless the damping 
contributes strongly to  the dynamics. 

On the other hand, the orthogonal expansion method should work on the t 
series for many problems where the dynamics are reversible. Any statistically 
stationary process obeying analytic equations can be handled like the diffusion 
example, if the transform p(a) of the desired statistical function is bounded at  
large IuI. More generally, when the underlying process is conservative, but not 
statistically stationary, it may still be possible, starting with a bounded statis- 
tical distribution and analytic equations of motion, to bound f ( t ) ,  demonstrate 
analyticity in a strip about the real t-axis, and obtain bounds for all t of the form 
(dnf(t)/dtnl < n!  q p C ,  with some positive q and C. If the statistical distribution 
smears in some reasonable way over underlying frequency parameters of the 

14 F L M  41 
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system, p(a) should have reasonable smoothness properties at large la]. Then 
statement (1’) of $ 2  should be satisfied, provided f ( t )  is so constructed that 

[f (t)12dt exists. 

An example where use of the Taylor series in time seems appropriate is the 
calculation of the constant of proportionality between scalar spectrum level and 
rate of transfer of scalar variance in Batchelor’s k-l law spectral range for con- 
vection of a passive scalar (Batchelor 1959). Here we set up again a prescribed 
isotropic, homogeneous, stationary, incompressible ensemble of velocity fields, 
formed as in $4, from realizations in which amplitudes, wave-numbers, and 
frequencies are bounded. At t = 0, we assume that there exists a k-l spectrum 
of scalar a t  wave-numbers k k,, where k,  characterizes the velocity field, and 
that there is no initial correlation between velocity and scalar fields. A Taylor 
series is easily developed for the rate a t  which scalar variance is transported 
from below some given k in the k-l range to above. This series contains only odd 
powers oft .  If Batchelor’s ideas are correct, the characteristic time or build-up 
of this transport is the reciprocal vorticity of the velocity field, and is independent 
of k.  Then the transport at  any k in the range should rise to an equilibrium value 
while the spectrum level itself is unchanged a t  all t. The time derivative of the 
rate of transport is then the candidate for the orthogonal-expansion treatment, 
with the asymptotic t = 00 transport rate determined, as in previous examples, 

r m  

With suitable modifications and precautions, a similar technique could be 
used t o  compute Kolmogorov’s inertial-range constant, provided, again, that 
the assumed qualitative physical ideas are correct. 

The orthogonal expansion method can be applied in a general way to damped 
systems by expanding not in t but in a strength parameter placed in front of the 
terms that are non-linear in stochastic quantities. In  turbulence applications, 
this means a Reynolds or PBclet number expansion. To illustrate the nature of 
the strength-parameter expansion, consider the two classes of systems, 

and 

where the y’s are dynamic variables, the vi are positive or zero damping constants, 
the A’s  are (possibly stochastic) coefficients and A, the strength parameter, 
ttakes the value one in the case of eventual interest. Turbulent convection (with 
stochastic A’s  representing a frozen velocity field) is an example of (5.1), while 
Navier-Stokes turbulence (with non-stochastic A ’ s )  is an example of ( 5 . 2 ) .  

If all vi = 0, the Taylor series in t for yi is actually a series in At, and the results 
of the orthogonal expansion method are indifferent to whether h or t is taken 
as expansion variable. Suppose next that vi = Y ,  the same for all i. Then (5.1) 
yields yi(t) = e-Ytg,(ht), where q,(At) is the At expansion of yi(t) for the case v = 0. 
The result of applying the orthogonal expansion method to the h series is now 
the same as if we applied it to the v = 0 problem, using the same weight, and then, 
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a t  the end, multiplied each convergent by e-vt. Note that, just as A would appear 
as a parameter in the weight w(a)  if we used t as expansion parameter, so now we 
will have t as a parameter in w(a)  when we use the h expansion (a  now being the 
Fourier-transform pair of A ) .  If v, = vfor all i, then (5.2) yields yi(t) = e-Vtg,(ht,), 
where g,(ht) is the t-expansion of yi(t) for v = 0 and t, = (1 - e-vt)/v. Thus the 
result of applying the orthogonal expansion method to the h expansion in this 
case is the same as if we applied it in the case v = 0 at  time t ,  and then multiplied 
the convergents by e-Yt. 

I n  all the cases just discussed, it is clear that the orthogonal expansion method 
applied to the h expansion will succeed if it succeeds for the t expansion of the 
undamped system. However, the behaviour is less clear for the non-trivial cases 
where the vi are not all the same. In  general, success of the expansion requires 
that the function of interest have a sufficiently healthy dependence on h over 
the whole real h-axis, in the sense we have discussed previously for the 
t-expansion. Particularly in the Navier-Stokes turbulence case, this is a rather 
uncomfortable requirement, even if satisfied, because it makes the nature of con- 
vergence for finite Reynolds number depend on behaviour out to infinite Reynolds 
number. To avoid this we can introduce a new strength parameter p, such that 
- 00 < p d 00 maps onto - 1 d h d 1. There are many ways to do this. Two 
simple possibilities are 

= +p2)4 (5.3) 

h = sin (&rp). (5.4) 

If (5.3) is used, the power series in p can be obtained by expanding the terms of 
the power series in h (obtained from the equations of motion), and we note that 
the radius of convergence of the p series is non-zero if that of the h series is. 
With (5.4)) all functions are periodic in p, and all the a integrals in $ 2  must be 
replaced by discrete sums. (This applies, in particular, to (2 .5 ) . )  In either case 
we now need only examine the dynamical behaviour for 0 < Ihj < 1. Suppose 
we wish to  calculate the energy of a decaying isotropic turbulence a t  some time t. 
We expand it in A, convert to a power series E ( p ) ,  using (5.3), apply the ortho- 
gonal expansion method to f (p) = dE(p)/dp, and, finally, find the approximants 

to the energy as the approximants tolomf(p)d,u. 

6. Expansion about the direct-interaction approximation 
It is not difficult to pose turbulence problems in which convergence of the 

orthogonal expansion method is unacceptably slow if it is applied to the power 
series in time or in strength parameter. Consider, for example, the decay of 
isotropic turbulence when the initial distribution has all odd-order moments 
zero and the initial energy is all confined below some wave-number k,. The 
Taylor series in time (or strength parameter) for the energy in a wave-number 
k > 2nko has all zero coefficients until order 2n + 2, while the labour of computing 
coefficients goes up rapidly with order. Clearly it is desirable, in such a problem, 
to expand about an approximation which incorporates the many-step energy 
cascade at the start. 

14-2 
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The direct-interaction approximation is a logical basis for such an expansion 
because it represents exactly a model dynamical system and has given good 
numerical agreement with isotropic decay experiments (Orszag 1 9 7 0 ~ ~ ) .  The 
model system (Kraichnan 1961) is obtained by considering an infinite collection 
of similar flow systems, setting up collective co-ordinates over the collection 
(labelled by a, /3, y, . . .), and then altering, in a random fashion, the dynamical 
couplings of the collective co-ordinates given by the Navier-Stokes equation. 
The difference between the original Navier-Stokes system and the final model 
system is expressed by a set of coupling factors #spy, which all have the value 
+ 1 in the Navier-Stokes system and take the values & 1 a t  random in the model. 

A model system which bridges between the direct-interaction approximation 
and the exact dynamics can now be constructed by taking 

where, again, the plus and minus signs are taken at random. Then h = 0 gives 
the direct-interaction approximation and h = a3 is the exact dynamics. With 
this model, i t  is not hard to  see that (in the language of Kraichnan 1961) all 
irreducible diagrams of order 2n (n 2) in the expansions of the equations for 
Green’s function and covariance appear with a factor [A2 / (  1 + h 2 ) ] ” ,  while the 
second-order diagram, which is the same for both direct-interaction model 
and exact dynamics, is unchanged. 

Given an initial ensemble, the model equations specified by (6.1) can be solved 
by iteration niethods to  yield an explicit expansion in powers of h for any 
statistical function a t  later times. We could then hope to  apply the orthogonal 
expansion method on the basis that, since we are always dealing with an actual 
dynamical system, there should be a non-singular variation of statistical func- 
tions with A over the whole h range. However, there is a serious difficulty in 
principle a t  the present state of the convergence theory. For h > 0, the actual 
Xavier-Stokes non-linear terms appear in the dynaniical equations with finite 
strength and, as a result, wc must expect that the radius of Convergence of the 
power series in A cannot be > 0 if that of the strength-parameter (Reynolds 
number) expansion is zero. But, extrapolating from the arguments of $4 (cf. 
Kraichnan 1966), q7e must assume that the latter radius is zero for any unbounded 
distribution. The trouble now is that the bridging model (6.1) makes bounded 
distributions impossible. An infinite collection is coupled, and, no matter what 
distribution is taken initially for the individual systems, the random coupling 
factors give a Gaussianly distributed input to  each system from interaction with 
all the others. 

We therefore propose working with an alternative expansion about the direct- 
interaction approximation, based on a different model equation, which avoids 
this difficulty and is, in addition, much more transparent. This expansion is 
closely related to one proposed by Phythian (1969). Consider the general non- 
linear system 

which is (5.2), written now without strength parameter. Assume, for simplicity, 
that the initial statistics and the structure of the A’s is such that (?yi(t) y j ( t ’ ) )  = 0 

Yi+ v i ~ i  == CjkAigkYjZ/,Lt A i j k  = Ai/<j> (6.2) 
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(i =i= j) for all t and t’ (e.g. when the y’s are Fourier modes of isotropic turbulence). 
Then the direct-interaction equations are (Kraichnan 1958) 

(i3jat + ~ i )  Gi(t ,  t’) = 4CjkAijkAjkj Gj(t, a)Fc(t ,  S )  Gi(s,t‘)ds, Gi(t’, t ‘ )  = 1, (6.3) 

+ 2 ~ j , ( ~ , 4  ” ~ ~ ( t ’ , ~ j ~ 3 ( t , ~ j ~ ~ ( t , s ) d s .  (6.4) 
0 

Here x( t , t ’ )  = (yi(t)yi(t’)> and Gi(t,t‘) is the mean response function for in- 
finitesimal perturbations of yi. That is, Gi(t, t’) = (Syi(t)/Sfi(t’)), where fi is an 
infinitesimal forcing term added to the right-hand side of (6.2). Equations (6.3) 
and (6.4) can be integrated forward from t = t’ = 0 if the X ( 0 , O )  are prescribed. 
Additional terms must be added to (6.3) and (6.4) if the initial y distribution has 
non-zero means (yi). 

The alternative model equation is 

where 7&, 8) = - 4qkAijkAjkiGj(t ,  8) Yk(t, s), (6.6) 

(4iW 4 i (W = 2 C j k ( A i j k ) ’ J p >  t ’ )  K&, t’). 

and qi(t) is a stochastic force, statistically independent of the initial y distribution, 
whose covariance is 

One way to realize the g’s is 
(6.7) 

g i ( t )  = xjkAij ,ctj( t)  tA(t), (6.8) 

where 6 and 6’ are stochastic variables, statistically independent of each other 
and of the initial y distribution, and such that 

( t i ( t )  t j ( t ’ ) )  = ( t i ( t )  ti(t’)) = JjjY,(t, t ’ ) .  (6.9) 
The appearances of averages in (6.5) means that it also may be thought of as 

representing a dynamical coupling of an infinite collection of systems, namely, 
all the realizations in the ensemble. However, in contrast to the original direct- 
interaction model, the couplings are non-random. For A = 1, (6.5) reduces to 
(6.2).  For h = 0, it is a dynamically linear equation, since change of any values 
in a single realization has infinitesimal effect on averages over the infinite 
ensemble. The direct-interaction response function equation (6.3) follows 
immediately from (6.5),  (6.6) at h = 0, in view of this. From the dynamical 
linearity we have also 

t’ 

0 
(y,(t’) Pi(t)> = (1 - A 2 P I  GAt’, s)(qi(s) 4i(t)) ds = O ) ,  (6.10) 

whence, multiplying (6.5) by yi(t’) and averaging, using (6.7), we obtain (6.4). 
Thus we recover the complete direct-interaction equations, for h = 0, without 
restrictions, other than those already stated, on the q-distribution; it need not be 
Gaussian. 

(6.11) 
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(6.2) conserves energy Xi(yJ2 if the vi vanish. This property is preserved in 
average by the direct-interaction equations and, consequently, the model equa- 
tion (6.5) conserves energy in the mean a t  h = 0. That is, the total energy of the 
ensemble is conserved. If we take the qi to be Gaussian variables, then (6.10) holds 
a t  non-zero A, despite the dynamical non-linearity (cf. Novikov 1964). In this 
case, the model equation conserves energy in the mean for the whole range 
0 < h < 1. The form of (6.5) recalls the interpretation of the direct-interaction 
approximation in terms of a dynamical damping and an input to a given mode 
from all others (Kadomtsev 1965) and also is close in spirit to the approachcs of 
Edwards (1964) and Herring (1966). By (6.11) and (6.6), the quantity Ti(t ,s) ,  
a dynamical damping with memory, is typically (but not always) positive. The 
realizability of the direct-interaction approximation for Y,(t, t ' )  follows im- 
mediately from the representation (6.5) of the approximation by an amplitude 
equation. 

If the yi and qi are written as power series in A, then (6.5) can be solved by 
iteration to yield, on averaging, an explicit power series in h for any statistical 
function of interest, and with any choice of initial y-distribution. We may then 
transform according to, say, (5.3) or (5.4), and apply the orthogonal expansion 
method to the power series inp. We expect non-singular, bounded behaviour over 
the whole ,u range, and analyticity in a strip about the real axis, if the q- and 
initial y-distributions are bounded. But there is still a trouble, with the q-dis- 
tribution. Unless the q's have Gaussian, and, hence, unbounded, distributions, 
(6.10) is altered for h + 0,  and the energy of the ensemble is not exactly conserved 
except a t  the end points h = 0 and h = 1. There are three alternatives open: 
(1) take a bounded q-distribution and live with the non-conservation in the 
hope that it will not be large, or will be insignificant in view of viscous damping; 
(2) take Gaussian q-distributions and hope, encouraged by the examples of 
$ 3  and $ 4, that the orthogonal expansion method may give good results anyhow; 
(3) put a strength factor in front of qi in (6.5), or leave parameters free in the 
q-distribution, and make these quantities such functions of h (to be developed 
in power series) that conservation in the mean is restored. 

A degenerate form of (6.5)-(6.9), in which only current times appear and the 
qi are suitably chosen white-noise processes, yields an expansion about the Marko- 
vian quasinormal approximation of Orszag (1970b) and shows that the latter 
has a model representation. This expansion may be regarded as intermediate 
between the strength-parameter expansion of $ 5 and the present expansion 
about the direct-interaction approximation. It permits bounded y-distributions 
without complications involving conservation. 

The concrete form taken by (6.5)-( 6.9) for decaying isotropic turbulence is 

(ajat + vk2)  ui(k, t) + (1 - A') ~ ( k ;  t ,  S )  ui(k, S) ds J: 
ss, 

= (l-h')tp,(k,t)-ihk~P,,(k);r;, ,u,(k-k', t)u,(k' , t) ,  (6.12) 

(6.13) 

(6.14) 

T ( k  t ,  8) = 7lk b ( k  P, a) G ( p ;  t ,  8) U(q;  t, s) pqdpdq,  

qi(k,t) = -ikl<j(k)Xy[j(k-k',t)&(k',t). 
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Here v is kinematic viscosity, ui(k, t )  is a spatial Fourier component of the velocity 
field (subscripts are now vector indices), k is an allowed wave-vector in a large 
cyclic box, l&(k) = (aij- kikj /k2) ,  G(p; t ,  s) is the average infinitesimal response 
function for wave-vector p[G(p; t ,  t )  = 13, U ( k ;  t ,  t’) is the modal time covariance 

r 1 

the integration A is over all p and q such that k,p,  q form a triangle, and 
b(k, p ,  4 )  = (p /k )  (xy + z3),  where x, y, x are the interior-angle cosines opposite 
k , p ,  q, respectively. The solenoidal, isotropic vector fields 5 and 5’ are statis- 
tically independent of each other, and of the initial u distribution, and each 
have the same covariance tensor as u. 

These equations are of interest apart from their use in expanding about 
the direct-interaction approximation. At h = 0,  they give an amplitude-equation 
representation of the direct-interaction approximation which may facilitate 
numerical solution of the equations. Solution of (6.12) with an ensemble of u 
and 5. fields may be easier than solving the full integro-differential equations for 
U ( k ;  t ,  t’) and G(k; t ,  t’) (Kraichnan 1964) because there are fewer time arguments. 
Equation (6.12) might also provide a useful improvement over simple eddy- 
viscosity formulas for representing the effects of subgrid scales in turbulence 
simulation computations. It provides for the possibility of back-flow of energy 
from the small scales, as well as eddy damping. Finally, the existence of the 
model equation (6.12) raises the possibility that model equations of similar 
type may exist that yield the Lagrangian-history direct-interaction approxi- 
mation. 

Note added in proof. Dr C. E. Leith (private communication) has independ- 
ently proposed the new model equations (6.5)-(6.14) for h = 0,  in work which 
antedates that reported here. 

7. Concluding remarks 
From the point of view of basic turbulence theory, the principaI import 

of the work reported above is, first, the conclusion that there is at least one way 
to construct approximations, for statistical functions, that are uniformly con- 
vergent in time, starting from a specification of the moments of the initial prob- 
ability distribution. Of equal interest is the emergence of conditions which 
must be satisfied for this to be possible. One condition is the physically obvious 
requirement that the quantity averaged evolve without any singular behaviour 
in all the realizations of the ensemble. However, we also found that we could 
prove uniform convergence to the correct function, without ambiguity, only if 
the function in question was analytic at  t = 0,  a condition which could be assured 
only by excluding initial distributions that permitted unbounded amplitudes. 
Unbounded distributions, like the Gaussian, could be covered by the conver- 
gence theory only if they were represented as the limit of a sequence of bounded 
distributions. The implication is that the familiar diagram expansions, which 
result from averaging term-by-term over a Gaussian distribution, may actually 
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not determine uniquely the functions they represent. Paradoxically, our approxi- 
mation procedure gave excellent convergence when this caution was disregarded 
and, in 3 3 and S; 4, we treated series, with zero radius of convergence, obtained 
from Gaussian distributions. Moreover, some good results have been obtained 
for the diffusion problem of § 4, with even less justification, by simply weighting 
the orders of the Gaussian irreducible-diagram expansion with powers of a formal 
parameter and then operating on the resulting series with tho present ortho- 
gonal expansion method and with Pad6 approximants (Kraichnan 1968,1970a). 

The accuracy of the results obtained, in 54, from the first three terms of a 
series expansion of the Lagrangian velocity correlation in a non-trivial diffusion 
problem suggests that, apart from interest for basic theory, methods like the 
orthogonal expansion procedure may have great practical utility. Thc computer 
simulations with which the analytical results were compared required careful 
programming followed by several hours of computation time on an IBM 360-95 
machine. I n  contrast, the evaluation of the Taylor series, and construction of 
the approximants, took much less time than did the simulation programming, 
and required no machine computation a t  all. 

It is to be hoped that the convergence theory can be extended and that more 
efficient algorithms can be discovered and justified. 

This work has benefited greatly from discussions with J. A. Herring, *J. B. 
Keller, W. V. R. Malkus and S. A. Orszag. Dr Keller and Dr Orszag contributed 
substantially t o  S;2, The work was supported by the Fluid Dynamics branch of 
the Office of Naval Research under Contract N00014-67-C-0284. 
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